Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338094

RESUMEN

Traits such as shape, size, and color often influence the economic and sentimental value of a horse. Around the world, horses are bred and prized for the colors and markings that make their unique coat patterns stand out from the crowd. The underlying genetic mechanisms determining the color of a horse's coat can vary greatly in their complexity. For example, only two genetic markers are used to determine a horse's base coat color, whereas over 50 genetic variations have been discovered to cause white patterning in horses. Some of these white-causing mutations are benign and beautiful, while others have a notable impact on horse health. Negative effects range from slightly more innocuous defects, like deafness, to more pernicious defects, such as the lethal developmental defect incurred when a horse inherits two copies of the Lethal White Overo allele. In this review, we explore, in detail, the etiology of white spotting and its overall effect on the domestic horse to Spot the Pattern of these beautiful (and sometimes dangerous) white mutations.

2.
Animals (Basel) ; 14(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38338160

RESUMEN

The influence of a horse's appearance on health, sentimental and monetary value has driven the desire to understand the etiology of coat color. White markings on the coat define inclusion for multiple horse breeds, but they may disqualify a horse from registration in other breeds. In domesticated horses (Equus caballus), 35 KIT alleles are associated with or cause depigmentation and white spotting. It is a common misconception among the general public that a horse can possess only two KIT variants. To correct this misconception, we used BEAGLE 5.4-phased NGS data to identify 15 haplotypes possessing two or more KIT variants previously associated with depigmentation phenotypes. We sourced photos for 161 horses comprising 12 compound genotypes with three or more KIT variants and employed a standardized method to grade depigmentation, yielding average white scores for each unique compound genotype. We found that 7 of the 12 multi-variant haplotypes resulted in significantly more depigmentation relative to the single-variant haplotypes (ANOVA). It is clear horses can possess more than two KIT variants, and future work aims to document phenotypic variations for each compound genotype.

3.
J Equine Vet Sci ; 128: 104875, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37406837

RESUMEN

Mutations causing depigmentation are relatively common in Equus caballus (horse). Over 40 alleles in multiple genes are associated with increased white spotting (as of February 2023). The splashed white phenotype, a coat spotting pattern described as appearing like the horse has been splashed with white paint, was previously associated with variants in the PAX3 and MITF genes. Both genes encode transcription factors known to control melanocyte migration and pigmentation. We report two novel mutations, a stop-gain mutation in PAX3 (XM_005610643.3:c.927C>T, ECA6:11,196,181, EquCab3.0) and a missense mutation in a binding domain of MITF (NM_001163874.1:c.993A>T, ECA16:21,559,940, EquCab3.0), each with a strong association with increased depigmentation in Pura Raza Española horses (P = 1.144E-11, N = 30, P = 4.441E-16, N = 39 respectively). Using a quantitative method to score depigmentation, the PAX3 and MITF mutations were found to have average white scores of 25.50 and 24.45, respectively, compared to the average white coat spotting score of 1.89 in the control set. The functional impact for each mutation was predicted to be moderate to extreme (I-TASSER, SMART, Variant Effect Predictor, SIFT). We propose to designate the MITF mutant allele as Splashed White 9 and the PAX3 mutant allele as Splashed White 10 per convention.


Asunto(s)
Color del Cabello , Pigmentación , Caballos/genética , Animales , Color del Cabello/genética , Pigmentación/genética , Fenotipo
4.
J Equine Vet Sci ; 127: 104563, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37182614

RESUMEN

Mutations in KIT, a gene that influences melanoblast migration and pigmentation, often result in mammalian white spotting. As of February 2023, over 30 KIT variants associated with white spotting were documented in Equus caballus (horse). Here we report an association of increased white spotting on the skin and coat with a variant in the 5'UTR of KIT (rs1149701677: g.79,618,649A>C). Horses possessing at least one alternate allele demonstrate phenotypic characteristics similar to other KIT mutations: clear borders around unpigmented regions on the body, face, and limbs. Using a quantitative measure of depigmentation, we observed an average white score of 10.70 among individuals with rs1149701677, while the average score of the control, homozygous reference sample was 2.23 (P = 1.892e-11, n = 109, t-test). The rs1149701677 site has a cross-species conservation score of 3.4, one of the highest scores across the KIT 5'UTR, implying regulatory importance for this site. Ensembl also predicted a "moderately impactful" functional effect for the rs1149701677 variant. We propose that this single nucleotide variant likely alters the regulation of KIT, which in turn may disrupt melanoblast migration causing an increase in white spotting on the coat. Alternatively, the rs1149701677 variant may be in linkage with another nearby variant with an as-yet-undiscovered functional impact. We propose to term this new allele "Holiday White" or W35 based on conventional nomenclature.


Asunto(s)
Color del Cabello , Mamíferos , Caballos/genética , Animales , Color del Cabello/genética , Regiones no Traducidas 5'/genética , Mamíferos/genética
6.
J Mol Diagn ; 21(6): 1034-1052, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31401124

RESUMEN

Pharmacogenetic testing increasingly is available from clinical and research laboratories. However, only a limited number of quality control and other reference materials currently are available for the complex rearrangements and rare variants that occur in the CYP2D6 gene. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Cell Repositories (Camden, NJ), has characterized 179 DNA samples derived from Coriell cell lines. Testing included the recharacterization of 137 genomic DNAs that were genotyped in previous Genetic Testing Reference Material Coordination Program studies and 42 additional samples that had not been characterized previously. DNA samples were distributed to volunteer testing laboratories for genotyping using a variety of commercially available and laboratory-developed tests. These publicly available samples will support the quality-assurance and quality-control programs of clinical laboratories performing CYP2D6 testing.


Asunto(s)
Alelos , Citocromo P-450 CYP2D6/genética , Técnicas de Genotipaje/normas , Variación Genética , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Colaboración Intersectorial , Reacción en Cadena de la Polimerasa Multiplex , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia
7.
PLoS One ; 11(9): e0161946, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27653506

RESUMEN

It has long been a quest in ruminants to understand how two very similar mycobacterial species, Mycobacterium avium ssp. paratuberculosis (MAP) and Mycobacterium avium ssp. avium (MAA) lead to either a chronic persistent infection or a rapid-transient infection, respectively. Here, we hypothesized that when the host immune response is activated by MAP or MAA, the outcome of the infection depends on the early activation of signaling molecules and host temporal gene expression. To test our hypothesis, ligated jejuno-ileal loops including Peyer's patches in neonatal calves were inoculated with PBS, MAP, or MAA. A temporal analysis of the host transcriptome profile was conducted at several times post-infection (0.5, 1, 2, 4, 8 and 12 hours). When comparing the transcriptional responses of calves infected with the MAA versus MAP, discordant patterns of mucosal expression were clearly evident, and the numbers of unique transcripts altered were moderately less for MAA-infected tissue than were mucosal tissues infected with the MAP. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis. Bayesian network modeling identified mechanistic genes, gene-to-gene relationships, pathways and Gene Ontologies (GO) biological processes that are involved in specific cell activation during infection. MAP and MAA had significant different pathway perturbation at 0.5 and 12 hours post inoculation. Inverse processes were observed between MAP and MAA response for epithelial cell proliferation, negative regulation of chemotaxis, cell-cell adhesion mediated by integrin and regulation of cytokine-mediated signaling. MAP inoculated tissue had significantly lower expression of phagocytosis receptors such as mannose receptor and complement receptors. This study reveals that perturbation of genes and cellular pathways during MAP infection resulted in host evasion by mucosal membrane barrier weakening to access entry in the ileum, inhibition of Ca signaling associated with decreased phagosome-lysosome fusion as well as phagocytosis inhibition, bias toward Th2 cell immune response accompanied by cell recruitment, cell proliferation and cell differentiation; leading to persistent infection. Contrarily, MAA infection was related to cellular responses associated with activation of molecular pathways that release chemicals and cytokines involved with containment of infection and a strong bias toward Th1 immune response, resulting in a transient infection.

8.
J Mol Diagn ; 18(1): 109-23, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26621101

RESUMEN

Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing.


Asunto(s)
Proteínas Portadoras/genética , Sistema Enzimático del Citocromo P-450/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Glucuronosiltransferasa/genética , Glutatión Transferasa/genética , Farmacogenética/métodos , Secuencia de Bases , Línea Celular , Pruebas Genéticas , Genotipo , Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Estados Unidos
9.
Bioinform Biol Insights ; 8: 45-63, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24578603

RESUMEN

Transcriptome alterations in liver and adipose tissue of cows with subclinical endometritis (SCE) at 29 d postpartum were evaluated. Bioinformatics analysis was performed using the Dynamic Impact Approach by means of KEGG and DAVID databases. Milk production, blood metabolites (non-esterified fatty acids, magnesium), and disease biomarkers (albumin, aspartate aminotransferase) did not differ greatly between healthy and SCE cows. In liver tissue of cows with SCE, alterations in gene expression revealed an activation of complement and coagulation cascade, steroid hormone biosynthesis, apoptosis, inflammation, oxidative stress, MAPK signaling, and the formation of fibrinogen complex. Bioinformatics analysis also revealed an inhibition of vitamin B3 and B6 metabolism with SCE. In adipose, the most activated pathways by SCE were nicotinate and nicotinamide metabolism, long-chain fatty acid transport, oxidative phosphorylation, inflammation, T cell and B cell receptor signaling, and mTOR signaling. Results indicate that SCE in dairy cattle during early lactation induces molecular alterations in liver and adipose tissue indicative of immune activation and cellular stress.

10.
Funct Integr Genomics ; 14(1): 261-73, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24318765

RESUMEN

This study assessed the effects of enhanced dietary plane of nutrition (early nutritional program (ENH)) on the gene expression pattern of ruminal epithelial tissue of young Holstein calves. Male Holstein calves were fed (3 to 42 days of age) with reconstituted control milk replacer (MR) (20 % crude protein, 20 % fat; 1.25 lb solids/calf) plus conventional starter (CON; 19.6 % crude protein, dry matter basis) or a high-protein MR (ENH; 28.5 % crude protein, 15 % fat; at around 2 % of body weight) plus high-crude protein starter (25.5 % crude protein, dry matter basis). The calves were weaned on day 43. Groups of calves in CON and ENH treatment were harvested after 5 and 10 weeks of feeding. The ruminal epithelium from five calves in each group was used for transcript profiling using a bovine oligonucleotide microarray. The postweaning mass of the reticulo-rumen was greater (P < 0.01) in calves consuming ENH. Transcriptome analysis revealed that 208 genes were altered due to treatment and 587 due to time alone. Bioinformatics analysis revealed that "galactose metabolism," "citrate cycle," "pyruvate metabolism," and "basal transcription factors" were the most impacted and induced pathways due to feeding ENH; whereas, "valine, leucine, and isoleucine biosynthesis" and "glyoxylate and dicarboxylate metabolism" were among the most inhibited. The integrated interpretation of the results suggested an overall increase in metabolism after weaning, particularly biosynthesis of glycan and nucleotide metabolism. Furthermore, the preweaning alterations in the transcriptome were mostly associated with cell growth, death, tissue development, and cellular morphology. The postweaning response revealed overexpression of genes associated with cell adhesion molecules, p53 signaling, and fatty acid metabolism. Our results indicated that feeding ENH to young Holstein calves elicited a strong transcriptomic response in the ruminal epithelial tissue.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Epitelio/fisiología , Rumen/fisiología , Transcriptoma , Animales , Bovinos , Proteínas en la Dieta/farmacología , Regulación de la Expresión Génica , Masculino , Anotación de Secuencia Molecular , Destete
11.
PLoS One ; 8(12): e81719, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349118

RESUMEN

Brucella melitensis causes the most severe and acute symptoms of all Brucella species in human beings and infects hosts primarily through the oral route. The epithelium covering domed villi of jejunal-ileal Peyer's patches is an important site of entry for several pathogens, including Brucella. Here, we use the calf ligated ileal loop model to study temporal in vivo Brucella-infected host molecular and morphological responses. Our results document Brucella bacteremia occurring within 30 min after intraluminal inoculation of the ileum without histopathologic traces of lesions. Based on a system biology Dynamic Bayesian Network modeling approach (DBN) of microarray data, a very early transient perturbation of the host enteric transcriptome was associated with the initial host response to Brucella contact that is rapidly averted allowing invasion and dissemination. A detailed analysis revealed active expression of Syndecan 2, Integrin alpha L and Integrin beta 2 genes, which may favor initial Brucella adhesion. Also, two intestinal barrier-related pathways (Tight Junction and Trefoil Factors Initiated Mucosal Healing) were significantly repressed in the early stage of infection, suggesting subversion of mucosal epithelial barrier function to facilitate Brucella transepithelial migration. Simultaneously, the strong activation of the innate immune response pathways would suggest that the host mounts an appropriate protective immune response; however, the expression of the two key genes that encode innate immunity anti-Brucella cytokines such as TNF-α and IL12p40 were not significantly changed throughout the study. Furthermore, the defective expression of Toll-Like Receptor Signaling pathways may partially explain the lack of proinflammatory cytokine production and consequently the absence of morphologically detectable inflammation at the site of infection. Cumulatively, our results indicate that the in vivo pathogenesis of the early infectious process of Brucella is primarily accomplished by compromising the mucosal immune barrier and subverting critical immune response mechanisms.


Asunto(s)
Brucella melitensis/patogenicidad , Brucelosis/genética , Íleon/metabolismo , Mucosa Intestinal/metabolismo , Ganglios Linfáticos Agregados/metabolismo , Transcriptoma/inmunología , Animales , Adhesión Bacteriana , Teorema de Bayes , Brucella melitensis/inmunología , Brucelosis/inmunología , Brucelosis/metabolismo , Brucelosis/microbiología , Bovinos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Íleon/inmunología , Íleon/microbiología , Evasión Inmune , Inmunidad Innata , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Masculino , Anotación de Secuencia Molecular , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/microbiología , Transducción de Señal , Biología de Sistemas
12.
Bioinform Biol Insights ; 7: 253-70, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23943656

RESUMEN

Transcriptome dynamics in the longissimus muscle (LM) of young Angus cattle were evaluated at 0, 60, 120, and 220 days from early-weaning. Bioinformatic analysis was performed using the dynamic impact approach (DIA) by means of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Database for Annotation, Visualization and Integrated Discovery (DAVID) databases. Between 0 to 120 days (growing phase) most of the highly-impacted pathways (eg, ascorbate and aldarate metabolism, drug metabolism, cytochrome P450 and Retinol metabolism) were inhibited. The phase between 120 to 220 days (finishing phase) was characterized by the most striking differences with 3,784 differentially expressed genes (DEGs). Analysis of those DEGs revealed that the most impacted KEGG canonical pathway was glycosylphosphatidylinositol (GPI)-anchor biosynthesis, which was inhibited. Furthermore, inhibition of calpastatin and activation of tyrosine aminotransferase ubiquitination at 220 days promotes proteasomal degradation, while the concurrent activation of ribosomal proteins promotes protein synthesis. Therefore, the balance of these processes likely results in a steady-state of protein turnover during the finishing phase. Results underscore the importance of transcriptome dynamics in LM during growth.

13.
Methods Mol Biol ; 1015: 71-85, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23824849

RESUMEN

Major strengths of mass spectrometry analysis include the accuracy of the detection principle, automatic data storage as well as simplicity and flexibility of assay design making it a premier choice for targeted genotyping of sequence variations. We explain the assay principle in detail and give step-by-step laboratory instructions. Finally, references point toward further use of mass spectrometry analysis for molecular haplotyping, re-sequencing, and quantitative analysis for copy number variations and gene expression studies are given.


Asunto(s)
Técnicas de Genotipaje/métodos , Haplotipos/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Variaciones en el Número de Copia de ADN/genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple/genética
14.
PLoS One ; 7(8): e42127, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912686

RESUMEN

Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection), processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i) early (30 min and 1 hr post-infection), ii) intermediate (2, 4 and 8 hrs post-infection), and iii) late (12 hrs post-infection). We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence) that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed pathways and specifically modified mechanistic genes contributing to the colonization of Peyer's patch.


Asunto(s)
Perfilación de la Expresión Génica , Tolerancia Inmunológica/genética , Mycobacterium avium subsp. paratuberculosis/fisiología , Biología de Sistemas , Inmunidad Adaptativa/genética , Animales , Teorema de Bayes , Bovinos , Células HeLa , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Mycobacterium avium subsp. paratuberculosis/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Ganglios Linfáticos Agregados/microbiología , Factores de Tiempo
15.
PLoS One ; 7(6): e38309, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701625

RESUMEN

Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular "uncoupling". Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters re-differentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way.


Asunto(s)
Blastocisto/fisiología , Comunicación Celular/fisiología , Desarrollo Embrionario/fisiología , Membranas Extraembrionarias/fisiopatología , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas de Transferencia Nuclear/veterinaria , Animales , Estudios de Casos y Controles , Bovinos , Diferenciación Celular/fisiología , Cartilla de ADN/genética , Transferencia de Embrión/veterinaria , Membranas Extraembrionarias/ultraestructura , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Hibridación in Situ/veterinaria , Microscopía Electrónica de Rastreo/veterinaria , Técnicas de Transferencia Nuclear/efectos adversos , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Análisis para Determinación del Sexo/veterinaria
16.
J Transl Med ; 10: 125, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22709571

RESUMEN

BACKGROUND: There is resurgence within drug and biomarker development communities for the use of primary tumorgraft models as improved predictors of patient tumor response to novel therapeutic strategies. Despite perceived advantages over cell line derived xenograft models, there is limited data comparing the genotype and phenotype of tumorgrafts to the donor patient tumor, limiting the determination of molecular relevance of the tumorgraft model. This report directly compares the genomic characteristics of patient tumors and the derived tumorgraft models, including gene expression, and oncogenic mutation status. METHODS: Fresh tumor tissues from 182 cancer patients were implanted subcutaneously into immune-compromised mice for the development of primary patient tumorgraft models. Histological assessment was performed on both patient tumors and the resulting tumorgraft models. Somatic mutations in key oncogenes and gene expression levels of resulting tumorgrafts were compared to the matched patient tumors using the OncoCarta (Sequenom, San Diego, CA) and human gene microarray (Affymetrix, Santa Clara, CA) platforms respectively. The genomic stability of the established tumorgrafts was assessed across serial in vivo generations in a representative subset of models. The genomes of patient tumors that formed tumorgrafts were compared to those that did not to identify the possible molecular basis to successful engraftment or rejection. RESULTS: Fresh tumor tissues from 182 cancer patients were implanted into immune-compromised mice with forty-nine tumorgraft models that have been successfully established, exhibiting strong histological and genomic fidelity to the originating patient tumors. Comparison of the transcriptomes and oncogenic mutations between the tumorgrafts and the matched patient tumors were found to be stable across four tumorgraft generations. Not only did the various tumors retain the differentiation pattern, but supporting stromal elements were preserved. Those genes down-regulated specifically in tumorgrafts were enriched in biological pathways involved in host immune response, consistent with the immune deficiency status of the host. Patient tumors that successfully formed tumorgrafts were enriched for cell signaling, cell cycle, and cytoskeleton pathways and exhibited evidence of reduced immunogenicity. CONCLUSIONS: The preservation of the patient's tumor genomic profile and tumor microenvironment supports the view that primary patient tumorgrafts provide a relevant model to support the translation of new therapeutic strategies and personalized medicine approaches in oncology.


Asunto(s)
Genómica , Neoplasias/genética , Animales , Humanos , Ratones , Ratones Desnudos , Mutación , Neoplasias/patología
17.
PLoS One ; 7(3): e33268, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22428004

RESUMEN

The cow mammary transcriptome was explored at -30, -15, 1, 15, 30, 60, 120, 240, and 300 d relative to parturition. A total of 6,382 differentially expressed genes (DEG) at a false discovery rate ≤ 0.001 were found throughout lactation. The greatest number of DEG (>3,500 DEG) was observed at 60 and 120 d vs. -30 d with the largest change between consecutive time points observed at -15 vs. 1 d and 120 vs. 240 d. Functional analysis of microarray data was performed using the Dynamic Impact Approach (DIA). The DIA analysis of KEGG pathways uncovered as the most impacted and induced 'Galactose metabolism', 'Glycosylphosphatidylinositol (GPI)-anchor biosynthesis', and 'PPAR signaling'; whereas, 'Antigen processing and presentation' was among the most inhibited. The integrated interpretation of the results suggested an overall increase in metabolism during lactation, particularly synthesis of carbohydrates and lipid. A marked degree of utilization of amino acids as energy source, an increase of protein export, and a decrease of the protein synthesis machinery as well cell cycle also were suggested by the DIA analysis. The DIA analysis of Gene Ontology and other databases uncovered an induction of Golgi apparatus and angiogenesis, and the inhibition of both immune cell activity/migration and chromosome modifications during lactation. All of the highly-impacted and activated functions during lactation were evidently activated at the onset of lactation and inhibited when milk production declined. The overall analysis indicated that the bovine mammary gland relies heavily on a coordinated transcriptional regulation to begin and end lactation. The functional analysis using DIA underscored the importance of genes associated with lactose synthesis, lipid metabolism, protein synthesis, Golgi, transport, cell cycle/death, epigenetic regulation, angiogenesis, and immune function during lactation.


Asunto(s)
Perfilación de la Expresión Génica/veterinaria , Lactancia/metabolismo , Glándulas Mamarias Animales/metabolismo , Transcriptoma/genética , Animales , Bovinos , Femenino , Galactosa/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Lactancia/genética , Análisis por Micromatrices , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Factores de Tiempo
18.
PLoS One ; 6(11): e26869, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22096503

RESUMEN

Salmonella enterica Serovar Typhimurium (S. Typhimurium) causes enterocolitis with diarrhea and polymorphonuclear cell (PMN) influx into the intestinal mucosa in humans and calves. The Salmonella Type III Secretion System (T3SS) encoded at Pathogenicity Island I translocates Salmonella effector proteins SipA, SopA, SopB, SopD, and SopE2 into epithelial cells and is required for induction of diarrhea. These effector proteins act together to induce intestinal fluid secretion and transcription of C-X-C chemokines, recruiting PMNs to the infection site. While individual molecular interactions of the effectors with cultured host cells have been characterized, their combined role in intestinal fluid secretion and inflammation is less understood. We hypothesized that comparison of the bovine intestinal mucosal response to wild type Salmonella and a SipA, SopABDE2 effector mutant relative to uninfected bovine ileum would reveal heretofore unidentified diarrhea-associated host cellular pathways. To determine the coordinated effects of these virulence factors, a bovine ligated ileal loop model was used to measure responses to wild type S. Typhimurium (WT) and a ΔsipA, sopABDE2 mutant (MUT) across 12 hours of infection using a bovine microarray. Data were analyzed using standard microarray analysis and a dynamic bayesian network modeling approach (DBN). Both analytical methods confirmed increased expression of immune response genes to Salmonella infection and novel gene expression. Gene expression changes mapped to 219 molecular interaction pathways and 1620 gene ontology groups. Bayesian network modeling identified effects of infection on several interrelated signaling pathways including MAPK, Phosphatidylinositol, mTOR, Calcium, Toll-like Receptor, CCR3, Wnt, TGF-ß, and Regulation of Actin Cytoskeleton and Apoptosis that were used to model of host-pathogen interactions. Comparison of WT and MUT demonstrated significantly different patterns of host response at early time points of infection (15 minutes, 30 minutes and one hour) within phosphatidylinositol, CCR3, Wnt, and TGF-ß signaling pathways and the regulation of actin cytoskeleton pathway.


Asunto(s)
Proteínas Bacterianas/inmunología , Factores de Intercambio de Guanina Nucleótido/inmunología , Proteínas de Microfilamentos/inmunología , Salmonelosis Animal/inmunología , Salmonella typhimurium/inmunología , Salmonella typhimurium/metabolismo , Biología de Sistemas/métodos , Animales , Proteínas Bacterianas/genética , Teorema de Bayes , Bovinos , Quimiocina CCL2/metabolismo , Quimiocina CCL8/metabolismo , Quimiocina CXCL6/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Interleucina-8/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Masculino , Proteínas de Microfilamentos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Salmonelosis Animal/metabolismo , Salmonella typhimurium/patogenicidad , Transducción de Señal/fisiología
19.
Funct Integr Genomics ; 11(1): 151-6, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20809086

RESUMEN

Cows experiencing severe postpartal negative energy balance (NEB) are at greater risk of developing mastitis than cows in positive energy balance (PEB). Our objectives were to compare mammary tissue gene expression profiles between lactating cows (n = 5/treatment) subjected to feed restriction to induce NEB and cows fed ad libitum to maintain PEB in order to identify genes involved in immune response and cellular metabolism that may predispose cows to an intramammary infection in non-infected mammary gland. The NEB cows were feed-restricted to 60% of calculated net energy for lactation requirements, and cows fed PEB cows were fed the same diet ad libitum. At 5 days after feed restriction, one rear mammary gland from all cows was biopsied for RNA extraction and transcript profiling using microarray and quantitative PCR. Energy balance (NEB vs. PEB) resulted in 278 differentially expressed genes (DEG). Among up-regulated DEG (n = 180), Ingenuity Pathway Analysis® identified lipid metabolism (8) and molecular transport (14) as some of the most enriched molecular functions. Genes down-regulated by NEB (98) were associated with cell growth and proliferation (21) and cell death (18). Results indicate that DEG due to NEB in mid-lactation were associated with numerous biological functions but we did not identify genes that could, a priori, be associated with risk of intramammary infection in non-infected mammary glands. Further studies with early postpartal cows are required.


Asunto(s)
Bovinos/inmunología , Dieta , Metabolismo Energético , Lactancia/inmunología , Glándulas Mamarias Animales/microbiología , Mastitis Bovina/inmunología , Animales , Biomarcadores/metabolismo , Bovinos/genética , Bovinos/microbiología , Femenino , Perfilación de la Expresión Génica , Lactancia/genética , Glándulas Mamarias Animales/inmunología , Glándulas Mamarias Animales/patología , Mastitis Bovina/genética , Análisis de Secuencia por Matrices de Oligonucleótidos
20.
Reproduction ; 141(1): 79-89, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20926692

RESUMEN

Axis specification in mouse is determined by a sequence of reciprocal interactions between embryonic and extra-embryonic tissues so that a few extra-embryonic genes appear as 'patterning' the embryo. Considering these interactions as essential, but lacking in most mammals the genetically driven approaches used in mouse and the corresponding patterning mutants, we examined whether a molecular signature originating from extra-embryonic tissues could relate to the developmental stage of the embryo proper and predict it. To this end, we have profiled bovine extra-embryonic tissues at peri-implantation stages, when gastrulation and early neurulation occur, and analysed the subsequent expression profiles through the use of predictive methods as previously reported for tumour classification. A set of six genes (CALM1, CPA3, CITED1, DLD, HNRNPDL, and TGFB3), half of which had not been previously associated with any extra-embryonic feature, appeared significantly discriminative and mainly dependent on embryonic tissues for its faithful expression. The predictive value of this set of genes for gastrulation and early neurulation stages, as assessed on naive samples, was remarkably high (93%). In silico connected to the bovine orthologues of the mouse patterning genes, this gene set is proposed as a new trait for embryo staging. As such, this will allow saving the bovine embryo proper for molecular or cellular studies. To us, it offers as well new perspectives for developmental phenotyping and modelling of embryonic/extra-embryonic co-differentiation.


Asunto(s)
Tipificación del Cuerpo/genética , Embrión de Mamíferos/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Neurulación/genética , Animales , Bovinos , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Genotipo , Edad Gestacional , Inseminación Artificial , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...